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Abstract
Integrable Hamiltonians with velocity-dependent potentials, including those of
Fokker–Planck Hamiltonians H = 1/2(p2

x +p2
y)+kxpx +kypy , are constructed

from integrable Hamiltonians of type H = 1/2(p2
x + p2

y) + V (x, y). In order
to carry out the analytical investigations, we convert the problem into that of
two coupled anisotropic quartic anharmonic oscillators using certain canonical
transformations; afterwards we give a complete description of the real phase
space topology of the system. We give also an explicit periodic solution for
singular common-level sets of the first integrals. All generic bifurcations of
Liouville tori were determined analytically and numerically.

PACS numbers: 0240, 0230I, 0510G, 4520J

1. Introduction

Integrability is clearly a central issue in understanding the origins and implications of the
behaviour of dynamical systems. Physically interesting integrable systems are rare, and
consequently it stirs up considerable excitement when one is discovered. Moreover, until now,
no systematic procedure has been established for the identification of an integrable system.

The question of integrability of a dynamical system was raised soon after Newton
formulated the equations of motion of three bodies in a gravitational field. By integrability
(often referred to as complete integrability) of a Hamiltonian system withN degrees of freedom
we mean the existence of N -analytic, single-valued, global integrals of the motion which are
functionally independent and in involution. When this is the case the Liouville theorem entails
that the problem can be solved by quadratures.

The concepts of integrability have been applied to an increasing number of physical
systems; among others the integrability of the Fokker–Planck equation has received particular
attention [1, 2]. Many statistical systems can be described by a Markov process whose
probability density P is a solution to the Fokker–Planck equation. In the weak noise limit
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one can make a semiclassical-type approximation for P and in that limit the equation for the
stationary probability density reduces to the form

1

2
Qij

∂�

∂qi

∂�

∂qj
+ Ki

∂�

∂qi
= 0 (1.1)

where� is the non-equilibrium potential (action) [1]. When studying the question of solvability
of equation (1.1) a mechanical analogy turns out to be helpful. It should be noted that the
nonlinear equation (1.1) has the form of a Hamilton–Jacobi equation

H

[
q,

∂S

∂q

]
= E (1.2)

where H denotes a Hamiltonian of a mechanical system with generalized coordinates qi , E
and S(q) denote the energy and the action, respectively, and ∂iS = ∂i� = pi defines the
momenta. A comparison with equation (1.1) gives E = 0 and

H(q, p) = 1
2Qijpipj + Ki(q)pi (1.3)

as the Hamiltonian associated with the macroscopic system. Since H can be uniquely
constructed from the coefficients of the Fokker–Planck equation we call (1.3) a Fokker–Planck
Hamiltonian whose first term can be interpreted as a kinetic energy term with an anisotropic
mass tensor. The second one, however, is different from the usual potential energy. Similar
terms appear when describing the motion of charged particles in an external magnetic field,
Ki(q) is, thus, analogous to a vector potential.

The purpose of the present paper is to bring out the connection via a canonical
transformation existing between the Fokker–Planck Hamiltonian (1.3) and the perturbed two-
dimensional anisotropic oscillator, and give a detailed description of the real phase space
topology of the system. Hence in what follows we restrict our study to a system with
two variables (four-dimensional Hamiltonian phase space q1, q2, p1, p2) and with a constant
diagonal anisotropic mass tensor, described by a Fokker–Planck Hamiltonian of the form

H(p, q, a, b, c) = − 1

3a2
p2

1 +
4

3b2
p2

2 +

(
− c

a
+ 2aq2

1 − 5b2

a
q2

2

)
p1

+

(
2c

b
+ 7bq2

2 + 4aq1q2

)
p2 (1.4)

where a, b and c are constants.
The main difficulty one can encounter when studying a Hamiltonian of this type, in addition

to that of integrability, is the separability of its variables (p and q). However, with the help of
the following canonical transformation:

q1 = 1

3a

(
py

y
− 5

4

px

x

)
p1 = a(x2 + y2)

q2 = 1

3b

(
px

x
− py

y

)
p2 = b

(
x2 + 5

2y
2
) (1.5)

we have reduced (1.4) to the well known separable form describing two coupled anisotropic
quartic anharmonic oscillators whose Hamiltonian flow is generated by the Hamiltonian

H = 1
2 (p

2
x + p2

y) + c(x2 + 4y2) + x4 + 6x2y2 + 8y4 (1.6)

which is the integrable extension case of the quartic potential [3].
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Then the equations for the vector field XH , defined by ω(XH) − dH are given by

dx

dt
= px

dpx

dt
= −4x3 − 12xy2 − 2cx

dy

dt
= py

dpy

dt
= −32y3 − 12x2y − 8cy

(1.7)

on the canonically symplectic phase space M4
� with the symplectic structure

ω(2) =
2∑

j=1

dpj ∧ dqj .

As is well known, there exists the second invariant [3] commuting with (1.6)

G = p4
x + 4x2(c + x2 + 6y2)p2

x − 16x3ypxpy + 4x4p2
y

+4x4(c2 + 2cx2 + 4cy2 + x4 + 4x2y2 + 4y4). (1.8)

According to the classical Liouville theorem, for non-critical values ofH andG the generic
invariant manifolds M4

� (i.e. the generic level sets) of a completely integrable Hamiltonian
system consist of tori or cylinders. In order to describe the topological nature of the Hamiltonian
flows on the whole phase space, i.e. the topology of the real level sets M4

�

M4
�(h, g) = {

(X, P ) ∈ �4 : H = h,G = g
}

where h and g are the values of the first integrals H and G; we have to determine all generic
bifurcations of Liouville tori which correspond to the topological nature of the non-generic
invariant manifolds, and then explain how the invariant manifolds topologically fit together,
as the values of the constants of motion vary. At last we give an explicit periodic solution for
non-generic invariant manifolds M4

� and a numerical illustration of the bifurcations studied
above.

2. Topological analysis

The Hamilton–Jacobi equation corresponding to the system (1.6) separates into u, v, pu, pv

coordinates defined in [3–5]

u = p2
x +

√
g

x2
+ 2x2 + 4y2

v = p2
x − √

g

x2
+ 2x2 + 4y2

pu = xpxpy − yp2
x + 4x2y3 + y(2x4 − √

g)

8x(xpy − 2ypx)

pv = xpxpy − yp2
x + 4x2y3 + y(2x4 +

√
g)

8x(xpy − 2ypx)
.
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It is easy to check that (x, y, px, py) can be expressed in terms of the u, v coordinates in the
following way:

x2 = 2
√
g

u − v

xpx = √
g

√
Z2(v) − √

Z1(u)

(u − v)2

y2 = u + v

8
−

√
g

u − v
−

(√
Z1(u) − √

Z2(v)
)2

16(u − v)2

ypy =
√
Z1(u) +

√
Z2(v)

16
+
px

2x

(
x2 + 6y2 + c +

p2
x

2x2

)
.

(2.1)

In the above expression Z1(u) and Z2(v) denote the polynomials

Z1(u) = 2u3 + 4cu2 − 8u(c2 + 2h +
√
g) − 16c(c2 + 2h +

√
g)

Z2(v) = 2v3 + 4cv2 − 8v(c2 + 2h − √
g) − 16c(c2 + 2h − √

g).
(2.2)

Differentiating (2.1) with respect to the variable time and using the system (1.7), we obtain
the following expressions:

du

dt
+

dv

dt
=

√
Z1(u) +

√
Z2(v)

du

dt
− dv

dt
=

√
Z1(u) −

√
Z2(v).

(2.3)

The differential equations satisfied by u, v are

du

dt
=

√
Z1(u)

dv

dt
=

√
Z2(v).

(2.4)

Thus u, v (hence x, y, px, py and afterwards q1, q2, p1, p2) can be expressed in terms of
Weierstrass elliptic functions.

2.1. Topology of generic invariant manifolds

In this section we shall describe the topological type of M4
� for all generic constants g, h ∈ �.

Remark. The Hamiltonian flow (1.7) is considered as a complex system; through
equation (2.1) one notices that variables x, y, px, py ∈ i�, but h and g are real constants.

In order to give a complete description of the topology of M4
�, we find first the bifurcation

diagram B, i.e. the set of the critical values of the energy–momentum mapping

(u, v, pu, pv) → (H,G)

It turns out (such as in Hénon–Heils [6], Goryatchev–Tchaplygin top [7–9], Kolossoff
potential [10, 11] and the swinging Attwood machine [12]) that B is exactly the discriminant
locus of the polynomials Z1(u) and Z2(v) whose coefficients are functions in h and g,

B = B1 ∪ B2
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Figure 1. Diagram of bifurcation B ∩ {c = constant}

Table 1. Real roots of the polynomials Z1(u) and Z2(v) for (h, g, c) ∈ M4
� \ B.

Domain Real roots of u and v

1 u1 < u2 < u3 v1 < v2 < v3

2 u1 < u2 < u3 v1

3 u1 v1

where

B1 = {
(h, g, c) ∈ �3/ disc(Z1(u)) = 0

}
B2 = {

(h, g, c) ∈ �3/ disc(Z2(v)) = 0
}
.

It is clear that the topological type of M4
� may change only as (h, g, c) passes through

B and that in each connected component of the sets �3 \ B, the level set M4
� has the same

topological type. Note that the bifurcation set B ⊂ �3{h, g, c} is invariant under the map

(h, g, c > 0) → (h, g, c < 0)

and the topological type of the level set M4
� is one and the same at the points (h, g, c > 0) and

(h, g, c < 0), thus it is enough to consider c > 0.

Definition. The sets B ∩ {c = c1} and B ∩ {c = c2} are topologically equivalent so there
exist continuous functions c = c(s), s ∈ [0, 1], such that c(0) = c1, c(1) = c2, and all sets
B ∩ {c = c(s)}, s ∈ [0, 1] are homeomorphic each to other.

Theorem. The set {�3 \ B} ∩ {c > 0} consists of three connected domains which do not
intersect with each other, as shown in figure 1. The topological type of M4

� is a disjoint union
of two-dimensional tori, two-dimensional cylinders and real plane �2 as shown in table 2.

Proof. Consider the complexified system

M4
�⊂ = {(x, y, px, py) ∈�⊂4: H = h,G = g; u �= v}

H = 1
2 (p

2
x + p2

y) + c(x2 + 4y2) + x4 + 6x2y2 + 8y4

G = p4
x + 4x2(c + x2 + 6y2)p2

x − 16x3ypxpy + 4x4p2
y

+4x4(c2 + 2cx2 + 4cy2 + x4 + 4x2y2 + 4y4).
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Consider also the elliptic curves

(1 : {w2
1 = Z1(u)} and (2 : {w2

2 = Z2(v)}

and the corresponding Riemann surfaces R1 and R2 of the same genus g1 = g2 = 1. Define
the natural projection

π : M4
�⊂ → (1 ⊗ (2

(where ⊗ is the symmetric product), and the complex conjugation on M4
�⊂:

τ : (x, y, px, py) → (x̄, ȳ, p̄x, p̄y). (2.5)

Consider also the natural projection η on the Riemann surface R = R1 ⊗ R2 given in
(u, v) coordinates by

η : (u, v) → (ū, v̄).

It induces an involution on M4
�⊂ by the natural projection π . Formulae (2.1) and (2.4) imply

that this involution η coincides with the complex conjugation (2.5) on M4
�⊂. Hence in order to

describe M4
� = Re(M4

�⊂) ∩ {c > 0} it is sufficient to study the projection π . �

Definition. A connected component of the set of fixed points of τ on the curves (1 and (2 is
called an oval.

To determine the ovals of (1 and (2, it suffices to study the real roots of the polynomials
Z1(u) and Z2(v) for different values of h and g as shown in table 1. Using conditions x �= 0,
y �= 0 from (1.5), (2.1), (2.4) and the condition that (u, v, pu, pv) ∈ �4, then, we find exactly
two admissible ovals whose projections on the u-plane and the v-plane are given by .1 and
.2 (see table 2).

The product of the admissible ovals in (1 ⊗ (2 and the projection π of M4
� such as

M4
� = π−1((1 ⊗ (2) = .1 ⊗ .2 gives:

• M4
� is a disjoint union of tori, two cylinders and the real plane �2 in domain 1;

• M4
� is a disjoint union of a cylinder and the real plane �2 in domain 2;

• M4
� is the real plane �2 in domain 3.

T and C denote a two-dimensional torus and a two-dimensional cylinder, respectively.

Table 2. Admissible ovals and topological type of M4
� for (h, g, c)M4

� \ B.

Projection of the admissible ovals on

Domain u-plane .1 v-plane .2 Topological type of M4
�

1 [u1, u2] ∪ [u3,∞[ [v1, v2] ∪ [v3,∞[ T + 2C + �2

2 [u1, u2] ∪ [u3,∞[ [v1,∞[ C + �2

3 [u1,∞[ [v1,∞[ �2
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Table 3. Generic bifurcations of the level set M4
� passing from domain i to domain j .

1 → 2 2 → 3

T + 2C + �2 → C + �2 C + �2 → �2

2.2. Topology of non-generic invariant manifolds

Suppose now that the constants h and g, are changed in such a way, that (h, g) passes through
the bifurcation diagram. Then, the topological type of M4

� may change and the bifurcation of
M4

� takes place.
In this section, we study the description of all generic bifurcations of the topological type

of M4
� (see table 3). The Fomenko classification of bifurcation of Liouville tori [13] cannot

be applied to the two coupled anisotropic quartic anharmonic oscillators as its invariant level
sets contain a non-compact component (cylinder and �2 plane).

Thus, we can have the type of bifurcation in table 3, as shown in figure 1.
To prove that, it suffices to look at the bifurcation of roots of the polynomials Z1(u) and

Z2(v) as shown in figure 2.

Figure 2. Correspondence between bifurcation of roots of polynomials Z1(u) and Z2(v) and
bifurcation of M4

�.
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3. Periodic solutions

When the bifurcation of Liouville tori takes place, the level set M4
� becomes completely

degenerate. Then we can have exceptional families of periodic solutions. It is seen from
table 4 that, if (h, g) is on the smooth curve L1 delimiting the domains 1 and 2 (see figure 1),
then M4

� contains a unique isolated circle S which is a periodic solution.
Consider now a fixed periodic solution belonging to the curve L1. The parameter u takes

its values in the admissible intervals [u1, u2] ∪ [u3,∞[ and v2 = v3 = 0 is equal to the double
root of the polynomial Z2(v) (see table 4). The values of the first integrals H and G on the
curve L1 are linked by g = (2h + c2)2.

Then we obtain from equation (2.1) the following parametrization of the fixed periodic
solution:

x2 = 2
√
g

u

xpx = −√
g

√
Z1(u)

(u − v)2

y2 = u

8
−

√
g

u
− Z1(u)

16u2

ypy =
√
Z1(u)

16
+
px

2x

(
x2 + 6y2 + c +

p2
x

2x2

)
.

The differential equation satisfied by u is

du

dt
=

√
Z1(u).

Thus u = u(t) and hence x(t), y(t) can be expressed in terms of elliptic functions. The period
of the solution u(t) is

T =
∮

dt =
∮

du√
Z1(u)

= 2
∫ u2

u1

du

Z1(u)
.

We obtain

T = 2√
u3 − u1

sn−1

(
1,

√
u2 − u1

u3 − u1

)
= 2√

u3 − u1
K

(√
u2 − u1

u3 − u1

)

where K is the complete elliptic integral of the first kind, and sn is the Jacobi elliptic function.
The roots of the polynomials Z1(u) on the curve L1 are such that for u1 < u2 < u3,

u1 = −u3 = −2
√

2h + c2
√

sign(2h + c2) + 1

u2 = −2c.

u(t) is given by solving the Jacobi inversion problem [14]

t =
∫ t

0
dt =

∫ u

u1

du

Z1(u)
.

Table 4. Topological type of M4
� on diagram B.

Curves .1 .2 M4
� = .1 ⊗ .2

L1 [u1, u2] ∪ [u3,∞[ {v2 = v3 = 0} ∪ [v1,∞[ S + C + �v + �2

L2 [u1,∞[ {v2 = v3} ∪ [v1,∞[ �u + �2
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Figure 3. Surface-of-section map (x = 1
2 , px > 0) in the plane (y, py ). The three sections

2, 3 and 4 of domain 1 of diagram B represent three surface-of-section maps corresponding to
three values of g = 9, 1, 0.0625, for fixed h = 2 (M4

� ∼ T ). Section 1 represents bifurcation
T + 2C + �2 → C + �2: the fixed point in this figure corresponds to the periodic solution. M4

� is
a circle S(g = 25, h = 2) on the curve L1 of diagram B.

We obtain

u(t) = u3 − (u3 − u1) dn2

(√
u2 − u1

2
t,

√
u2 − u1

u3 − u1

)

where dn is the Jacobi elliptic function.
In the plane (x, y), the Cartesian equation of the solution on the curveL1 (parabolic mode)

is

y2 = c

2(2h + c2)
x4 − c

4
.

4. Numerical illustration

Using a surface-of-section map, we give a numerical illustration of the topological analysis
studied in section 2.

For fixed values of energy h, as g varies the Liouville tori contained in the level set
H = h,G = g change their topological type. The surface-of-section map shown in figure 3
gives an illustration of the sequence of bifurcations of Liouville tori. This map is constructed
using the method introduced by Poincaré and extended by Hénon [15].

5. Conclusion

The main concern of this paper is to study, through the Liouville tori and their bifurcations
analytically and numerically, the phase space topology of the motion of particle subjected
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to velocity-dependent forces (Fokker–Planck). The kind of corresponding Hamiltonians
associated with these systems are known to be not easily intrinsically, if not at all, separable.
By means of a canonical transformation, we have been able to convert the previous system
into the well known separable system of two coupled anisotropic quartic anharmonics.
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